Attitude Stabilization with Real-time Experiments of a Tail-sitter Aircraft in Horizontal Flight
نویسندگان
چکیده
This paper focusses on the attitude stabilization of a mini tail-sitter aircraft, considering aerodynamic effects. The main characteristic of this vehicle is that it operates in either the hover mode for launch and recovery, or the horizontal mode during cruise. The dynamic model is obtained using the Euler–Lagrange formulation, and aerodynamic effects are obtained by studying the propeller effects. A nonlinear saturated Proportional-Integral-Derivative (SPID) control with compensation of aerodynamic moments is proposed in order to achieve the asymptotic staO. Garcia (B) · R. Lozano Laboratoire Franco-Mexicain d’Informatique et Automatique, LAFMIA UMI 3175, CNRS-CINVESTAV, Mexico City, Mexico e-mail: [email protected] R. Lozano e-mail: [email protected], [email protected] P. Castillo · R. Lozano Laboratoire Heudiasyc UMR CNRS 6599, Université de Technologie de Compiègne, Compiègne, France P. Castillo e-mail: [email protected] K. C. Wong School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney 2006, NSW, Australia e-mail: [email protected] bilization of the vehicle in horizontal mode. In addition, a homemade inertial measurement unit (HIMU) is built for operating the complete operational range of the vehicle (including vertical and horizontal modes). Finally, simulation results are presented for validating the control law, and practical results are obtained in real-time during the flight.
منابع مشابه
In-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft
The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...
متن کاملTail-sitter UAV having one tilting rotor: Modeling, Control and Real-Time Experiments
In this paper we address the development of a single-rotor tail-sitter Unmanned Aerial Vehicle (UAV), whose configuration provides structural benefits for flight stabilization. The mathematical model of the vertical take-off landing (VTOL) aircraft is obtained through the Newton-Euler approach. In order to stabilize the vehicle we employ a control algorithm based on separated saturation functio...
متن کاملRobust Adaptive Attitude Stabilization of a Fighter Aircraft in the Presence of Input Constraints
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonli...
متن کاملThe T-Wing: A VTOL UAV for Defense and Civilian Applications
This paper describes progress made on the T-Wing tail-sitter UAV programme currently being undertaken via a collaborative research agreement between Sonacom Pty Ltd and the University of Sydney. This vehicle is being developed in response to a perceived requirement for a more flexible surveillance and remote sensing platform than is currently available. Missions for such a platform include coas...
متن کاملModeling and control of an agile tail-sitter aircraft
This paper presents a model of an agile tail-sitter aircraft, which can operate as a helicopter as well as capable of transition to fixed-wing flight. Aerodynamics of the co-axial counter-rotating propellers with quad rotors are analysed under the condition that the co-axial is operated at equal rotor torque (power). A finite-time convergent observer based on Lyapunov function is presented to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 65 شماره
صفحات -
تاریخ انتشار 2012